Module 3 Network Layer

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Network Layer is Host-to-Host

Internet Protocols

Two Key Network-Layer Functions

- *Forwarding:* move packets from router's input to appropriate router output
- *Routing:* determine route taken by packets from source to destination.
 - → routing algorithms
- Connection service: before datagrams flow, two end hosts and intervening routers establish virtual connection (VC)
 - → Needed in *some* network architectures: ATM, frame relay, X.25
 - → Network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Interplay Between Routing and Forwarding

Network service model

Q: What *service model* for "channel" transporting datagrams from sender to receiver?

<u>example services for</u> <u>individual datagrams:</u>

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

<u>example services for a flow</u> <u>of datagrams:</u>

- in-order datagram
 delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

Network	Service Model	Guarantees ?				Concestion
Architecture		Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed Minimum	No	Yes	No	Yes

Network layer connection and connection-less service

- Datagram network provides network-layer connectionless service
- Virtual Circuit (VC) network provides network-layer connection service
- Analogous to the transport-layer services, but:
 - → service: host-to-host
 - → no choice: network provides one or the other
 - → implementation: in network core

Virtual Circuits

"source-to-destination path behaves much like telephone circuit"

→ performance-wise

- network actions along source-to-destination path

- call setup, teardown for each call *before* data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-destination path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)

Datagram networks

- no call setup at networklayer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- Packets forwarded using destination host address
 - packets between same source-destination pair may take different paths

Datagram Forwarding table

Datagram Forwarding table

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through	0
TIOOTOOD OOOTOITT OOOTOITT TITTTTT	
11001000 00010111 00011000 00000000 through	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000 through	2
11001000 00010111 00011111 11111111	
otherwise	3

Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ********	1
11001000 00010111 00011*** ********	2
otherwise	3

Longest prefix matching

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** ********	0
11001000 00010111 00011000 ********	1
11001000 00010111 00011*** ********	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010 Which interface? Which interface?

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - → "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - → can adapt, perform control, error recovery
 - → simple inside network, complexity at "edge"
- many link types
 - → different characteristics
 - → uniform service difficult

ATM (VC)

- evolved from telephony
- human conversation:
 - → strict timing, reliability requirements
 - → need for guaranteed service
- "dumb" end systems
 - → telephones
 - complexity inside network

Router Architecture Overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- *forwarding* datagrams from incoming to outgoing link

Input Port Functions

• queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs

 \rightarrow often measured as multiple of input/output line rate

 \rightarrow N inputs: switching rate N times line rate desirable

• three types of switching fabrics

The Internet Network layer

Host, router network layer functions:

IP datagram format

IP Fragmentation & Reassembly

- network links have MTU (maximum transmission unit): largest possible link-level frame.
 - → different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - → one datagram becomes several datagrams
 - → "reassembled" only at final destination
 - → IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

IP Addressing: introduction

- IP address: 32-bit identifier for host, router *interface*
- *interface:* connection between host/router and physical link
 - → router's typically have multiple interfaces
 - → host typically has one interface
 - IP addresses associated with each interface

1

223

Subnets

• IP address:

- → subnet part (high order bits)
- → host part (low order bits)
- What's a subnet ?
 - → device interfaces with same subnet part of IP address
 - → can physically reach each other without intervening router

Subnet (223.1.3.0/24)

Subnets

How many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length

 \rightarrow address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

<u>Q</u>: How does a *host* get IP address?

- Static allocation: hard-coded by system admin in a file
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - → "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to *dynamically* obtain its IP address from network server when it joins network

Can renew its lease on address in use

Allows reuse of addresses (only hold address while connected)

Support for mobile users who want to join network

DHCP overview:

- → host broadcasts "DHCP discover" message [optional]
- → DHCP server responds with "DHCP offer" message [optional]
- → host requests IP address: "DHCP request" message
- → DHCP server sends address: "DHCP ack" message

NAT: Network Address Translation

• Motivation: local network uses just one IP address as far as outside world is concerned:

- \rightarrow range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network **→**

CS755

devices inside local net not explicitly addressable, visible by outside world (a security plus).

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - → ICMP messages carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	<u>description</u>		
0	0	echo reply (ping)		
3	0	dest. network unreachable		
3	1	dest host unreachable		
3	2	dest protocol unreachable		
3	3	dest port unreachable		
3	6	dest network unknown		
3	7	dest host unknown		
4	0	source quench (congestion		
		control - not used)		
8	0	echo request (ping)		
9	0	route advertisement		
10	0	router discovery		
11	0	TTL expired		
12	0	bad IP header		

Traceroute and ICMP

Source sends series of UDP segments to destination

- \rightarrow first has TTL =1
- \rightarrow second has TTL=2, etc.
- → unlikely port number
- When nth datagram arrives to nth router:
 - → router discards datagram
 - → and sends to source an ICMP message (type 11, code 0)
 - → ICMP message includes name of router & IP address
- when ICMP message arrives, source calculates RTT
- traceroute does this 3 times.

Stopping criterion

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" packet (type 3, code 3)
- when source gets this ICMP, stops.

IPv6

- Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - → header format helps speed processing/forwarding
 - → header changes to facilitate
 - QoS IPv6 datagram format:
 - → fixed-length 40 byte header
 - → no fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of "flow" not well defined).

Next header: identify upper layer protocol for data

ver	pri	flow label		
I	payload	len next hdr hop lir		
source address (128 bits)				
destination address (128 bits)				
data				

32 bits

Other Changes from IPv4

- *Checksum*: removed entirely to reduce processing time at each hop
- *Options:* allowed, but outside of header, indicated by "Next Header" field
- *ICMPv6:* new version of ICMP
 - → additional message types, e.g. "Packet Too Big"
 - → multicast group management functions

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - → no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?

 Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

