SDCMS MBA Modal Question Paper – 2020 **Quantitative Techniques for Management**

Time: 3 Hours PAPER

PAPER CODE: KMB – 206 **Total Marks: 100 ID:270247**

Section-A

Attempt all questions in brief.

Marks (2*10=20)

- 1. What are the tools of Q.T.?
- 2. Give some uses of Q.T.
- 3. What are the applications of Linear Programming in Management?
- 4. What do you mean by Initial Basic Feasible Solutions of Transportation Problem?
- 5. Distinguish between Assignment & Transportation Problem.
- 6. What do you mean by saddle point?
- 7. Define a sequencing problem.
- 8. What do you mean by arrival rate and service rate in Queuing Theory?
- 9. What is the importance of replacement?
- 10. Explain time estimates in PERT.

Section-B

Attempt all questions in detail.

Marks (3*10=30)

- 1. Discuss the significance and scope of Operation Research in business and industry.
- 2. A company produces two types of presentation goods A and B that require gold and silver. Each unit of type A requires 3 grams of silver and 1 gram of gold while that of B requires 1 grams of silver and 2 grams of gold. The company can procure 9 grams of silver and 8 grams of gold. If each unit of type A brags a profit of Rs. 40 and that of type B Rs. 50. Determine the number of units of each type that should be produced to maximize the profit. Indicate the feasible region a graph paper.
- 3. Why does the problem of replacement arises? What is individual and group replacement?

Section-C

Attempt all questions in brief.

Marks (5*10=50)

- 1. Discuss briefly the limitations of operation research techniques.
- 2. Solve Linear Programming Problem and solve the following LPP-

Maximize, Z = 30x1 + 40x2 + 20x3Stc, $10x1 + 12x2 + 7x3 \le 10,000$ $7x1 + 10x2 + 8x3 \le 8,000$ $x1 + x2 + x3 \le 1,000$ where, $x1,x2,x3 \ge 0$

3. Explain the theory of dominance in the solution of rectangular game.

4. The XYZ Co. has 5 jobs to be done and 5 men to do these jobs. The no. of hours each man would like to accomplish each job is given below:

Men							
Jobs	A	В	C	D	E		
1	4	6	11	16	9		
2	5	8	16	19	9		
3	9	13	21	21	13		
4	6	6	9	11	7		
5	11	11	16	26	11		

5. Calculate average expected time, and draw network for a project with the following activity times.

Activity	Op. time (in hrs.)	Time (in hrs.)	Mixed Lotelly time (in hrs.)
2-4	1	5	3
2-6	1	7	4
4-8	4	16	7
6-8	1	5	1.5
8-10	1.5	14.5	3.5

Also calculate the variance and standard derivation of the project.