
UNIT II - THE RELATIONAL
DATA MODEL & ALGEBRA

PRASHANT TOMAR

Relational Model

• The relational model represents the database as a collection of relations. A

relation is nothing but a table of values. Every row in the table represents a

collection of related data values. These rows in the table denote a real-world

entity or relationship.

• The table name and column names are helpful to interpret the meaning of values

in each row. The data are represented as a set of relations. In the relational

model, data are stored as tables. However, the physical storage of the data is

independent of the way the data are logically organized.

Relational Model Concepts

• Attribute

Each column in a Table. Attributes are the properties which define a relation. e.g.,

Student_Rollno, NAME etc.

• Tables

In the Relational model the, relations are saved in the table format. It is stored

along with its entities. A table has two properties rows and columns. Rows

represent records and columns represent attributes.

Tuple

It is nothing but a single row of a table, which contains a single record.

• Relation Schema

A relation schema represents the name of the relation with its attributes.

• Degree

The total number of attributes which in the relation is called the degree of the

relation.

• Cardinality

Total number of rows present in the Table.

• Column

The column represents the set of values for a specific attribute.

• Relation instance

Relation instance is a finite set of tuples in the RDBMS system. Relation instances

never have duplicate tuples.

• Relation key

Every row has one, two or multiple attributes, which is called relation key.

• Attribute domain

Every attribute has some pre-defined value and scope which is known as attribute

domain

Relational Integrity constraints

• Relational Integrity constraints is referred to conditions which must be present

for a valid relation. These integrity constraints are derived from the rules in the

mini-world that the database represents.

• There are many types of integrity constraints. Constraints on the Relational

database management system is mostly divided into three main categories are:

1. Domain constraints

2. Key constraints

3. Referential integrity constraints

Domain Constraints

• Domain constraints can be violated if an attribute value is not appearing in the corresponding

domain or it is not of the appropriate data type.

• Domain constraints specify that within each tuple, and the value of each attribute must be

unique. This is specified as data types which include standard data types integers, real

numbers, characters, Booleans, variable length strings, etc.

Exam: The example shown demonstrates creating a domain constraint such that CustomerName is not NULL

Create DOMAIN CustomerName

CHECK (value not NULL)

CREATE TABLE table_name (

column1 datatype constraint,

column2 datatype constraint,

column3 datatype constraint,

);

Key constraints

• An attribute that can uniquely identify a tuple in a relation is called the key of the

table. The value of the attribute for different tuples in the relation has to be

unique.

Example: In the given table, CustomerID is a key attribute of Customer Table. It is most likely to

have a single key for one customer, CustomerID =1 is only for the CustomerName =" Google".

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

Referential integrity constraints

• Referential integrity constraints is base on the concept of Foreign Keys.

• A foreign key is an important attribute of a relation which should be referred to in

other relationships.

• Referential integrity constraint state happens where relation refers to a key

attribute of a different or same relation. However, that key element must exist in

the table.

• Example:

In the below example, we have 2 relations, Customer and Billing. Tuple for

CustomerID=1 is referenced twice in the relation Billing. So we know

CustomerName=Google has billing amount $300

Operations in Relational Model

• Four basic update operations performed on relational database model are Insert,

update, delete and select.

 Insert is used to insert data into the relation

Delete is used to delete tuples from the table.

Modify allows you to change the values of some attributes in existing tuples.

 Select allows you to choose a specific range of data.

• Whenever one of these operations are applied, integrity constraints specified on

the relational database schema must never be violated.

Inset Operation

• The insert operation gives values of the attribute for a new tuple which should be

inserted into a relation.

INSERT INTO table_name

(column1,column2,column3,...)

VALUES (value1, value2, value3, ...);

Update Operation

• You can see that in the below-given relation table CustomerName= 'Apple' is

updated from Inactive to Active.

UPDATE table

SET column1 = expression1,

column2 = expression2,

column_n = expression_n

[WHERE conditions];

Delete Operation

• To specify deletion, a condition on the attributes of the relation selects the tuple to be

deleted.

DELETE FROM table
[WHERE conditions];

The Delete operation could violate referential integrity if the tuple which is deleted is

referenced by foreign keys from other tuples in the same database.

Select Operation

• To specify selection, all and condition on the attributes of the relation selects the

tuple.

SELECT expressions

FROM tables

[WHERE conditions];

Best Practices for creating a Relational Model

• Data need to be represented as a collection of relations

• Each relation should be depicted clearly in the table

• Rows should contain data about instances of an entity

• Columns must contain data about attributes of the entity

• Cells of the table should hold a single value

• Each column should be given a unique name

• No two rows can be identical

• The values of an attribute should be from the same domain

Advantages of using Relational model

• Simplicity: A relational data model is simpler than the hierarchical and network model.

• Structural Independence: The relational database is only concerned with data and not with a

structure. This can improve the performance of the model.

• Easy to use: The relational model is easy as tables consisting of rows and columns is quite

natural and simple to understand

• Query capability: It makes possible for a high-level query language like SQL to avoid complex

database navigation.

• Data independence: The structure of a database can be changed without having to change any

application.

• Scalable: Regarding a number of records, or rows, and the number of fields, a database should

be enlarged to enhance its usability.

Disadvantages of using Relational model

• Few relational databases have limits on field lengths which can't be exceeded.

• Relational databases can sometimes become complex as the amount of data

grows, and the relations between pieces of data become more complicated.

• Complex relational database systems may lead to isolated databases where the

information cannot be shared from one system to another.

Functional Dependencies

Functional Dependency

• Functional Dependency is when one attribute determines another attribute in a

DBMS system. Functional Dependency plays a vital role to find the difference

between good and bad database design.

• A functional dependency (FD) is a relationship between two attributes, typically

between the PK and other non-key attributes within a table.

• In other words, functional dependency is a constraint that describes the

relationship between attributes in a relation

Example

• In this example, if we know the value of Employee number, we can obtain

Employee Name, city, salary, etc.

• By this, we can say that the city, Employee Name, and salary are functionally

depended on Employee number.

• A functional dependency is denoted by an arrow →

• The functional dependency of X on Y is represented by X →Y

Employee number Employee Name Salary City

1 ANKIT 38000 GREATER NOIDA

2 VAIBHAV 50000 NOIDA

3 AMIT 25000 DELHI

Key Terms Description

Axiom
Axioms is a set of inference rules used to infer all the functional dependencies on a relational

database.

Decomposition
It is a rule that suggests if you have a table that appears to contain two entities which are

determined by the same primary key then you should consider breaking them up into two

different tables.

Dependent
It is displayed on the right side of the functional dependency diagram.

Determinant
It is displayed on the left side of the functional dependency Diagram.

Union
It suggests that if two tables are separate, and the PK is the same, you should consider putting

them. together

Rules of Functional Dependencies

• Reflexive rule

If X is a set of attributes and Y is subset of X, then X holds a value of Y.

• Augmentation rule

When x -> y holds, and c is attribute set, then ac -> bc also holds. That is adding

attributes which do not change the basic dependencies.

• Transitivity rule

This rule is very much similar to the transitive rule in algebra if x -> y holds

and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

Types of Functional Dependencies

• Multivalued dependency

• Trivial functional dependency

• Non-trivial functional dependency

• Transitive dependency

Multivalued dependency in DBMS

• Multivalued dependency occurs in the situation where there are multiple

independent multivalued attributes in a single table. A multivalued dependency

is a complete constraint between two sets of attributes in a relation. It requires

that certain tuples be present in a relation.

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

• In previous example, maf_year and color are independent of each other but

dependent on car_model. In previous example, these two columns are said to be

multivalue dependent on car_model.

• This dependence can be represented like this:

car_model -> maf_year

car_model-> colour

Trivial Functional dependency

• The Trivial dependency is a set of attributes which are called a trivial if the set of

attributes are included in that attribute.

• So, X -> Y is a trivial functional dependency if Y is a subset of X.

• Consider this table with two columns Emp_id and Emp_name.

• {Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a subset

of {Emp_id,Emp_name}.

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Non trivial functional dependency

• Functional dependency which also known as a nontrivial dependency occurs

when A->B holds true where B is not a subset of A. In a relationship, if attribute B

is not a subset of attribute A, then it is considered as a non-trivial dependency.

• (Company} -> {CEO} (if we know the Company, we knows the CEO name)

• But CEO is not a subset of Company, and hence it's non-trivial functional

dependency.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Transitive dependency

• A transitive is a type of functional dependency which happens when t is indirectly formed by two

functional dependencies.

• {Company} -> {CEO} (if we know the compay, we know its CEO's name)

• {CEO } -> {Age} If we know the CEO, we know the Age

• Therefore according to the rule of rule of transitive dependency:

• { Company} -> {Age} should hold, that makes sense because if we know the company name, we can know his age.

• Note: You need to remember that transitive dependency can only occur in a relation of three or more attributes.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not

repeat at multiple locations in that database

• It helps you to maintain the quality of data in the database

• It helps you to defined meanings and constraints of databases

• It helps you to identify bad designs

• It helps you to find the facts regarding the database design

Relational Algebra

• Relational algebra is a procedural query language, which takes instances of relations as

input and yields instances of relations as output. It uses operators to perform queries.

An operator can be either unary or binary. They accept relations as their input and

yield relations as their output. Relational algebra is performed recursively on a relation

and intermediate results are also considered relations.

• Relational algebra is a widely used procedural query language. It collects instances of

relations as input and gives occurrences of relations as output. It uses various operation

to perform this action.

• Relational algebra operations are performed recursively on a relation. The output of

these operations is a new relation, which might be formed from one or more input

relations.

Basic Relational Algebra Operations
• Unary Relational Operations

• SELECT (symbol: σ)

• PROJECT (symbol: π)

• RENAME (symbol: ρ)

• Relational Algebra Operations From Set Theory

• UNION (υ)

• INTERSECTION (∩)

• DIFFERENCE (-)

• CARTESIAN PRODUCT (x)

• Binary Relational Operations

• JOIN

• DIVISION

SELECT (σ)

• The SELECT operation is used for selecting a subset of the tuples according to a

given selection condition. Sigma(σ) Symbol denotes it. It is used as an expression

to choose tuples which meet the selection condition. Select operation selects

tuples that satisfy a given predicate.

σp(r)

• σ - is the predicate

• r - stands for relation which is the name of the table

• p - is prepositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

• For example: LOAN Relation

• σ BRANCH_NAME = "perryride" (LOAN)

• OUTPUT

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Perryride L-16 1300

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

σsubject = "database"(Books)

• Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

• Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or

those books published after 2010.

Projection(π)

• The projection eliminates all attributes of the input relation but those mentioned

in the projection list. The projection method defines a relation that contains a

vertical subset of Relation.

• This helps to extract the values of specified attributes to eliminates duplicate

values. (pi) The symbol used to choose attributes from a relation. This operation

helps you to keep specific columns from a relation and discards the other

columns.

• Here, the projection of CustomerName and status will give

Π CustomerName, Status (Customers)

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

4 Alibaba Active

CustomerName Status

Google Active

Amazon Active

Apple Inactive

Alibaba Active

Union operation (υ)

• UNION is symbolized by ∪ symbol. It includes all tuples that are in tables A or in

B. It also eliminates duplicate tuples. So, set A UNION set B would be expressed

as:

The result <- A ∪ B

For a union operation to be valid, the following conditions must hold –

• R and S must be the same number of attributes.

• Attribute domains need to be compatible.

• Duplicate tuples should be automatically removed.

A ∪ B gives:

Table A Table B

Column 1 Column 2

1 1

1 2

Column 1 Column 2

1 1

1 3

Table A ∪ B

Column 1 Column 2

1 1

1 2

1 3

Set Difference (-)

• (-) Symbol denotes it. The result of A - B, is a relation which includes all tuples

that are in A but not in B.

• The attribute name of A has to match with the attribute name in B.

• The two-operand relations A and B should be either compatible or Union compatible.

• It should be defined relation consisting of the tuples that are in relation A, but not in B.

• Example: A – B

Table A – B

Column 1 Column 2

1 2

Intersection

• An intersection is defined by the symbol ∩

A ∩ B

• Defines a relation consisting of a set of all tuple that are in both A and B.

However, A and B must be union-compatible.

• Example:

A ∩ B

Table A ∩ B

Column 1 Column 2

1 2

Cartesian product(X)

• This type of operation is helpful to merge columns from two relations. Generally,

a Cartesian product is never a meaningful operation when it performs alone.

However, it becomes meaningful when it is followed by other operations.

• Example – Cartesian product

σ column 2 = '1' (A X B)

• Output – The above example shows all rows from relation A and B whose column

2 has value 1

σ column 2 = '1' (A X B)

Column 1 Column 2

1 1

1 1

Join Operations

• Join operation is essentially a cartesian product followed by a selection criterion.

• Join operation denoted by⋈.

• JOIN operation also allows joining variously related tuples from different relations.

Types of JOIN:

Various forms of join operation are:

• Inner Joins:

 Theta join

 EQUI join

 Natural join

• Outer join:

 Left Outer Join

 Right Outer Join

 Full Outer Join

Inner Join:

In an inner join, only those tuples that satisfy the matching criteria are included,

while the rest are excluded. Let's study various types of Inner Joins:

Theta Join

• The general case of JOIN operation is called a Theta join. It is denoted by

symbol θ

• Example A ⋈θ B

• Theta join can use any conditions in the selection criteria. For example:

A ⋈ A.column 2 > B.column 2 (B)

A ⋈ A.column 2 > B.column 2 (B)

Column 1 Column 2

1 2

EQUI join

• When a theta join uses only equivalence condition, it becomes a equi join. For

example:

A ⋈ A.column 2 = B.column 2 (B)

• EQUI join is the most difficult operations to implement efficiently in an RDBMS

and one reason why RDBMS have essential performance problems.

A ⋈ A.column 2 = B.column 2 (B)

Column 1 Column 2

1 1

NATURAL JOIN (⋈)

• Natural join can only be performed if there is a common attribute (column)

between the relations. The name and type of the attribute must be same.

Example: Consider the following two tables.

• C ⋈ D

C

Num Square

2 4

3 9

D

Num Cube

2 8

3 9

C ⋈ D

Num Square Cube

2 4 8

3 9 18

OUTER JOIN

• In an outer join, along with tuples that satisfy the matching criteria, we also

include some or all tuples that do not match the criteria.

Left Outer Join (A B)

In the left outer join, operation allows keeping all tuple in the left relation.

However, if there is no matching tuple is found in right relation, then the attributes

of right relation in the join result are filled with null values.

Left Table (Courses)

A B

100 Database

101 Mechanics

102 Electronics

Right Table (HoD)

C D

100 Alex

102 Maya

104 Mira

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

Right Outer Join (A B)

• In the right outer join, operation allows keeping all tuple in the right relation.

However, if there is no matching tuple is found in the left relation, then the

attributes of the left relation in the join result are filled with null values.

• A B

Courses HoD

A B C D

100 Database 100 Alex

102 Electronics 102 Maya

--- --- 104 Mira

Left Table (Courses)

A B

100 Database

101 Mechanics

102 Electronics

Right Table (HoD)

C D

100 Alex

102 Maya

104 Mira

Full Outer Join (A B)

• In a full outer join, all tuples from both relations are included in the result,

irrespective of the matching condition.

• A B

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

--- --- 104 Mira

