
Database Management 

Systems

UNIT 1ST

PRASHANT TOMAR



• A database is an organized collection of data, generally stored and accessed

electronically from a computer system. Where databases are more complex they

are often developed using formal design and modeling techniques.

• Database is a collection of related data and data is a collection of facts and

figures that can be processed to produce information.

• Mostly data represents recordable facts. Data aids in producing information,

which is based on facts. For example, if we have data about marks obtained by all

students, we can then conclude about toppers and average marks.



• The database management system (DBMS) is the software that interacts

with end users, applications, and the database itself to capture and analyze the

data.

• The DBMS software additionally encompasses the core facilities provided to

administer the database. The sum total of the database, the DBMS and the

associated applications can be referred to as a "database system". Often the term

"database" is also used to loosely refer to any of the DBMS, the database system

or an application associated with the database.

• A database management system stores data in such a way that it becomes easier

to retrieve, manipulate, and produce information.



Characteristics

• Traditionally, data was organized in file formats. DBMS was a new concept then,

and all the research was done to make it overcome the deficiencies in traditional

style of data management. A modern DBMS has the following characteristics −

• Real-world entity − A modern DBMS is more realistic and uses real-world entities

to design its architecture. It uses the behavior and attributes too. For example, a

school database may use students as an entity and their age as an attribute.

• Relation-based tables − DBMS allows entities and relations among them to form

tables. A user can understand the architecture of a database just by looking at

the table names.



• Isolation of data and application − A database system is entirely different than its data.

A database is an active entity, whereas data is said to be passive, on which the database

works and organizes. DBMS also stores metadata, which is data about data, to ease its

own process.

• Less redundancy − DBMS follows the rules of normalization, which splits a relation

when any of its attributes is having redundancy in values. Normalization is a

mathematically rich and scientific process that reduces data redundancy.

• Consistency − Consistency is a state where every relation in a database remains

consistent. There exist methods and techniques, which can detect attempt of leaving

database in inconsistent state. A DBMS can provide greater consistency as compared to

earlier forms of data storing applications like file-processing systems.



• Query Language − DBMS is equipped with query language, which makes it more

efficient to retrieve and manipulate data. A user can apply as many and as different

filtering options as required to retrieve a set of data. Traditionally it was not possible

where file-processing system was used.

• ACID Properties − DBMS follows the concepts of Atomicity, Consistency, Isolation, and

Durability normally shortened as ACID. These concepts are applied on transactions,

which manipulate data in a database. ACID properties help the database stay healthy in

multi-transactional environments and in case of failure.

• Multiuser and Concurrent Access − DBMS supports multi-user environment and allows

them to access and manipulate data in parallel. Though there are restrictions on

transactions when users attempt to handle the same data item, but users are always

unaware of them.



• Multiple views − DBMS offers multiple views for different users. A user who is in the Sales

department will have a different view of database than a person working in the Production

department. This feature enables the users to have a concentrate view of the database

according to their requirements.

• Security − Features like multiple views offer security to some extent where users are unable to

access data of other users and departments. DBMS offers methods to impose constraints while

entering data into the database and retrieving the same at a later stage. DBMS offers many

different levels of security features, which enables multiple users to have different views with

different features. For example, a user in the Sales department cannot see the data that

belongs to the Purchase department. Additionally, it can also be managed how much data of

the Sales department should be displayed to the user. Since a DBMS is not saved on the disk as

traditional file systems, it is very hard for miscreants to break the code.



DBMS - ARCHITECTURE

• The design of a DBMS depends on its architecture. It can be centralized or

decentralized or hierarchical. The architecture of a DBMS can be seen as either

single tier or multi-tier. An n-tier architecture divides the whole system into

related but independent n modules, which can be independently modified,

altered, changed, or replaced.

• In 1-tier architecture, the DBMS is the only entity where the user directly sits on

the DBMS and uses it. Any changes done here will directly be done on the DBMS

itself. It does not provide handy tools for end-users. Database designers and

programmers normally prefer to use single-tier architecture.



• If the architecture of DBMS is 2-tier, then it must have an application through

which the DBMS can be accessed. Programmers use 2-tier architecture where

they access the DBMS by means of an application. Here the application tier is

entirely independent of the database in terms of operation, design, and

programming.

• It can be centralized or decentralized or hierarchical. The architecture of a DBMS

can be seen as either single tier or multi-tier. The tiers are classified as follows :

 1-tier architecture

 2-tier architecture

 3-tier architecture



1-TIER ARCHITECTURE

• One-tier architecture involves putting all of the required components for a

software application or technology on a single server or platform.

• Basically, a one-tier architecture keeps all of the elements of an application,

including the interface, Middleware and back-end data, in one place. Developers

see these types of systems as the simplest and most direct way.



2-TIER ARCHITECTURE

• The two-tier is based on Client Server architecture. 2-tier DBMS architecture includes

an Application layer between the user and the DBMS, which is responsible to

communicate the user's request to the database management system and then send

the response from the DBMS to the user.

• The second-tier processes are commonly referred to as the application logic layer.

These processes manage the business logic of the application, and are permitted access

to the third-tier services.

• The application logic layer is where most of the processing work occurs. Multiple client

components can access the second-tier processes simultaneously, so this application

logic layer must manage its own transactions.





3-TIER ARCHITECTURE

• A 3-tier architecture separates its tiers from each other based on the complexity

of the users and how they use the data present in the database. It is the most

widely used architecture to design a DBMS.

• This architecture has different usages with different applications. It can be used in

web applications and distributed applications. The strength in particular is when

using this architecture over distributed systems.







• Database (Data) Tier − At this tier, the database resides along with its query

processing languages. We also have the relations that define the data and their

constraints at this level.

• Application (Middle) Tier − At this tier reside the application server and the

programs that access the database. For a user, this application tier presents an

abstracted view of the database. End-users are unaware of any existence of the

database beyond the application. At the other end, the database tier is not aware

of any other user beyond the application tier. Hence, the application layer sits in

the middle and acts as a mediator between the end-user and the database.



• User (Presentation) Tier − End-users operate on this tier and they know nothing

about any existence of the database beyond this layer. At this layer, multiple

views of the database can be provided by the application. All views are generated

by applications that reside in the application tier.



ENTITY- RELATIONSHIP DATA MODEL 

• The ER or (Entity Relational Model) is a high-level conceptual data model diagram.

Entity-Relation model is based on the notion of real-world entities and the relationship

between them.

• ER modeling helps you to analyze data requirements systematically to produce a well-

designed database. So, it is considered a best practice to complete ER modeling before

implementing your database.

• An Entity–relationship model (ER model) describes the structure of a database with

the help of a diagram, which is known as Entity Relationship Diagram (ER Diagram).

• An ER model is a design or blueprint of a database that can later be implemented as a

database. The main components of E-R model are: entity set and relationship set.



What is ER Diagrams

• Entity relationship diagram displays the relationships of entity set stored in a

database.

• In other words, we can say that ER diagrams help you to explain the logical

structure of databases.

• At first look, an ER diagram looks very similar to the flowchart. However, ER

Diagram includes many specialized symbols, and its meanings make this model

unique.





• ER model allows you to draw Database Design

• It is an easy to use graphical tool for modeling data

•Widely used in Database Design

• It is a GUI representation of the logical structure of a Database

• It helps you to identifies the entities which exist in a system and the

relationships between those entities.



Why use ER Diagrams

• Helps you to define terms related to entity relationship modeling

• Provide a preview of how all your tables should connect, what fields are going to be on each

table

• Helps to describe entities, attributes, relationships

• ER diagrams are translatable into relational tables which allows you to build databases quickly

• ER diagrams can be used by database designers as a blueprint for implementing data in specific

software applications

• The database designer gains a better understanding of the information to be contained in the

database with the help of ERP diagram

• ERD is allowed you to communicate with the logical structure of the database to users



Components of the ER Diagram

This model is based on three basic concepts:

• Entities

• Attributes

• Relationships

For example, in a University database, we might have entities for Students,

Courses, and Lecturers. Students entity can have attributes like Rollno, Name, and

DeptID. They might have relationships with Courses and Lecturers.





WHAT IS ENTITY

• A real-world thing either living or non-living that is easily recognizable and non-

recognizable. It is anything in the enterprise that is to be represented in our

database. It may be a physical thing or simply a fact about the enterprise or an

event that happens in the real world.

• An entity can be place, person, object, event or a concept, which stores data in

the database. The characteristics of entities are must have an attribute, and a

unique key. Every entity is made up of some 'attributes' which represent that

entity.



Examples of entities:

• Person: Employee, Student, Patient

• Place: Store, Building

• Object: Machine, product, and Car

• Event: Sale, Registration, Renewal

• Concept: Account, Course

Entity set: (Notation of an Entity)

Student

• An entity set is a group of similar kind of entities. It may contain entities with attribute sharing similar

values. Entities are represented by their properties, which also called attributes. All attributes have their

separate values. For example, a student entity may have a name, age, class, as attributes.



Example of Entities:

• A university may have some departments. All these departments employ various

lecturers and offer several programs.

• Some courses make up each program. Students register in a particular program

and enroll in various courses. A lecturer from the specific department takes each

course, and each lecturer teaches a various group of students.



Weak Entities

• A weak entity is a type of entity which doesn't have its key attribute. It can be

identified uniquely by considering the primary key of another entity. For that,

weak entity sets need to have participation.

• In below example, "Trans No" is a discriminator within a group of transactions in

an ATM.



STRONG ENTITY SET WEAK ENTITY SET

Strong entity set always has a primary key. It does not have enough attributes to build a primary key.

It is represented by a rectangle symbol. It is represented by a double rectangle symbol.

It contains a Primary key represented by the underline 

symbol.

It contains a Partial Key which is represented by a dashed 

underline symbol.

The member of a strong entity set is called as dominant 

entity set.

The member of a weak entity set called as a subordinate 

entity set.

Primary Key is one of its attributes which helps to 

identify its member.

In a weak entity set, it is a combination of primary key 

and partial key of the strong entity set.

In the ER diagram the relationship between two strong 

entity set shown by using a diamond symbol.

The relationship between one strong and a weak entity 

set shown by using the double diamond symbol.

The connecting line of the strong entity set with the 

relationship is single.

The line connecting the weak entity set for identifying 

relationship is double.



Relationship

• Relationship is nothing but an association among two or more entities. E.g., Tom

works in the Chemistry department.

• A relationship captures how entities are related to one another. Relationships can

be thought of as verbs, linking two or more nouns.

• Examples: an owns relationship between a company and a computer,

a supervises relationship between an employee and a department,

a performs relationship between an artist and a song, a proves relationship

between a mathematician and a conjecture, etc.



• Entities take part in relationships. We can often identify relationships with verbs 

or verb phrases.

For example:

• You are attending this lecture

• I am giving the lecture

• Just look entities, we can classify relationships according to relationship-types:

• A student attends a lecture

• A lecturer is giving a lecture.



ATTRIBUTES

• It is a single-valued property of either an entity-type or a relationship-type. An

attribute is represented by an Ellipse. For example, a lecture might have

attributes: time, date, duration, place, etc.

• OR An attribute is a property, trait, or characteristic of an entity, relationship, or

another attribute.

For example, a Transactions might have attributes: Trans No, Amount, Type etc.



TYPES OF ATTRIBUTES DESCRIPTION

Simple attribute

Simple attributes can't be divided any further. For example, a

student's contact number. It is also called an atomic value.

Composite attribute

It is possible to break down composite attribute. For example, a

student's full name may be further divided into first name,

second name, and last name.

Derived attribute

This type of attribute does not include in the physical database.

However, their values are derived from other attributes present

in the database. For example, age should not be stored directly.

Instead, it should be derived from the DOB of that employee.

Multivalued attribute

Multivalued attributes can have more than one values. For

example, a student can have more than one mobile number,

email address, etc.



Cardinality

• Defines the numerical attributes of the relationship between two entities or

entity sets.

• Cardinality specifies how many instances of an entity relate to one instance of

another entity. Ordinality is also closely linked to cardinality. While cardinality

specifies the occurrences of a relationship, ordinality describes the relationship

as either mandatory or optional. In other words, cardinality specifies the

maximum number of relationships and ordinality specifies the absolute minimum

number of relationships.



Different types of cardinal relationships are:

• One-to-One Relationships

• One-to-Many Relationships

• Many to One Relationships

• Many-to-Many Relationships



One-to-one

• One entity from entity set X can be associated with at most one entity of entity

set Y and vice versa.

• For Example: One student can register for numerous courses. However, all those

courses have a single line back to that one student.



One-to-many

• One entity from entity set X can be associated with multiple entities of entity set

Y, but an entity from entity set Y can be associated with at least one entity.

• For example, one class is consisting of multiple students.



Many to One

• More than one entity from entity set X can be associated with at most one entity

of entity set Y. However, an entity from entity set X may or may not be associated

with more than one entity from entity set X.

• For example, many students belong to the same class.



Many to Many

• One entity from X can be associated with more than one entity from Y and vice

versa.

• For example, Students as a group are associated with multiple faculty members,

and faculty members can be associated with multiple students.



ER- Diagram Notations

R- Diagram is a visual representation of data that describe how data is related to

each other.

• Rectangles: This symbol represent entity types

• Ellipses : Symbol represent attributes

• Diamonds: This symbol represents relationship types

• Lines: It links attributes to entity types and entity types with other relationship

types

• Primary key: attributes are underlined

• Double Ellipses: Represent multi-valued attributes





Steps to Create an ER Diagram

• Step 1) Entity Identification

• Step 2) Relationship Identification

• Step 3) Cardinality Identification

• Step 4) Identify Attributes

• Step 5) Create the ERD



Create ER Diagram

• In a university, a Student enrolls in Courses. A student must be assigned to at

least one or more Courses. Each course is taught by a single Professor. To

maintain instruction quality, a Professor can deliver only one course


