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Intelligent agents should have capacity for

•Perceiving, that is, acquiring information from

environment,

•Knowledge Representation, that is, representing its

understanding of the world,

•Reasoning, that is, inferring the implications of what it

knows and of the choices it has, and

•Acting, that is, choosing what it want to do and carry it

out.



Representation of knowledge and the reasoning

process are central to the entire field of artificial

intelligence. The primary component of a knowledge-

based agent is its knowledge-base. A knowledge-base

is a set of sentences. Each sentence is expressed in a

language called the knowledge representation

language. Sentences represent some assertions about

the world. There must mechanisms to derive new

sentences from old ones. This process is known as

inferencing or reasoning.



Logic is the primary vehicle for representing and reasoning

about knowledge. A logic consists of two parts-

• A language (Formal Language) and

• A method of reasoning.

The logical language has two aspects-

1. Syntax and

2. Semantics

Thus, to specify or define a particular logic, one needs to specify

three things:



• Syntax: The atomic symbols of the logical language, and the rules for

constructing well- formed, non-atomic expressions (symbol structures) of

the logic. Syntax specifies the symbols in the language and how they can be

combined to form sentences. Hence facts about the world are represented

as sentences in logic.

• Semantics: The meanings of the atomic symbols of the logic, and the rules

for determining the meanings of non-atomic expressions of the logic. It

specifies what facts in the world a sentence refers to. Hence, also specifies

how you assign a truth value to a sentence based on its meaning in the

world. A fact is a claim about the world, and may be true or false.

• Syntactic Inference Method: The rules for determining a subset of logical

expressions, called theorems of the logic. It refers to mechanical method for

computing (deriving) new (true) sentences from existing sentences.



Facts are claims about the world that are True or False, whereas a

representation is an expression (sentence) in some language that can be

encoded in a computer program and stands for the objects and relations in

the world.

There are a number of logical systems with different syntax and semantics.

• Propositional logic

• First order predicate logic

• Temporal

• Modal

• Higher order logics

• Non-monotonic



• Propositional logic : All objects described are fixed or unique

"John is a student" student(john)

Here John refers to one unique person.

• First order predicate logic : Objects described can be unique or variables to stand for

a unique object

"All students are poor"  

For All(S) [student(S) -> poor(S)]

Here S can be replaced by many different unique students.

• Temporal : Represents truth over time.

• Modal : Represents doubt

• Higher order logics : Allows variable to represent many relations between objects

• Non-monotonic :Represents defaults



• Propositional logic: Propositional logic consists of:

 The logical values true and false (T and F)

 Propositions: “Sentences,” which are atomic (that is, they must be treated 

as indivisible units, with no internal structure), and  Have a single logical 

value, either true or false.

 Operators, both unary and binary; when applied to logical values, yield 

logical values

• The usual operators are and, or, not, and implies

• In propositional logic (PL) an user defines a set of propositional

symbols, like P and Q. User defines the semantics of each of these

symbols. For example,

• P means "It is hot"

• Q means "It is humid"

• R means "It is raining"



A sentence (also called a formula or well-formed formula or wff) is defined as:

1. A symbol

2. 2. If S is a sentence, then ~S is a sentence, where "~" is the "not" logical operator

3. If S and T are sentences, then

– (S v T),

– (S ^ T),

– (S => T), and

– (S <=> T) are sentences, where the four logical connectives correspond to "or," "and,"

"implies," and "if and only if," respectively .

Examples of PL sentences:

– (P ^ Q) => R (here meaning "If it is hot and humid, then it is raining")

– Q => P (here meaning "If it is humid, then it is hot")

– Q (here meaning "It is humid.")



Implication (--> ) means 

PQ( for sufficient condition)

if  P is true  then Q is true but   if Q is true then P is not true

Ex.  1.   If it is rain (T)  then the road are wet(T).

What about of this proposition:

2.  If the road are  wet then it is rain  ( not implication) 

Equivalence  (<-> ) or Biconditional

P <->Q  it means PQ   and QP

P is true  then Q is true but   if Q is true then P is true



Here are the binary operators that are traditionally used:

X Y

AND

X  Y

OR

X  Y

IMPLIES

X  Y

BICONDITIONAL

X  Y

T T T T T T

T F F T F F

F T F T T F

F F F F T T



Logical expressions:

• All logical expressions can be computed with some combination 

of and (), or (), and not () operators

• For example, logical implication can be computed this way:

X Y X X  Y X  Y

T T F T T

T F F F F

F T T T T

F F T T T

Notice that X  Y is equivalent to X  Y



Worlds:

A world is a collection of prepositions and logical expressions

relating those prepositions

Example:

Propositions: JohnLikesMary, MaryIsFemale, MaryIsRich

Expressions:

MaryIsFemale  MaryIsRich  JohnLikesMary

A proposition “says something” about the world, but since it

is atomic, propositions tend to be very specialized and

inflexible



Models:

• A model is an assignment of a truth value to each proposition, for example:

– JohnLikesMary: T, MaryIsFemale: T, MaryIsRich: F

• An expression is satisfiable if there is a model for which the expression is

true

– For example, the above model satisfies the expression

MaryIsFemale  MaryIsRich  JohnLikesMary

• An expression is valid if it is satisfied by every model

– This expression is not valid:

MaryIsFemale  MaryIsRich  JohnLikesMary

because it is not satisfied by this model:

JohnLikesMary: F, MaryIsFemale: T, MaryIsRich: T

– But this expression is valid:

MaryIsFemale  MaryIsRich  MaryIsFemale



Inference rules in propositional logic



• Ex. For propositional logic :

1. Anil is intelligent (T/F)

2. Anil is hardworking.(T/F)

• Both are proposition

Intelligent(Anil)  :              where  Anil is Object

Hardworking(Anil) : And hardworking or intelligent

is the relation or function

• If Anil is intelligent  and Anil is hardworking then Anil scores 

high mark.

• It is called compound proposition



• First Order Predicate logic: First order Predicate

logic(FOPL) is one of the oldest and most important

representation schemes for the knowledge. In FOPL,

statements from a natural like English are translated into

symbolic structure comprised of predicates, variable, contants,

quantifiers and logical connectives.

• We can easily represent real –world facts as logical

propositional written as well-formed formulas (w.ffs) in

propositional logic. But some limitation in propositional logic.

Suppose we want to represent the obvious fact stated by the

classical sentence.



Socrates  is a Man

we could write

SOCRATESMAN

Plato is Man

PLATOMAN

Both are separated assertion, we can represent these   fact as-

MAN(SOCRATES)

MAN(PLATO)

Now  we are in even more difficulties if we try to represent the equally 

classic  sentence.

Ex.  All men are mortal.

MOTALMAN



But that fails to capture the relationship b/t any

individual being a Man & that individual being

Mortal. So we need to write separate statement

about the mortality of every know man ; to need

variable and quantifiers , so use the first order

predicates logic. In predicate logic, we can represent

real-world facts as statement written as wff’s.



Syntax of First-Order Logic : The symbols and rules of

combination permitted in FOPL are defined as follow……

1.Connectives: These are five basic

connective symbol as follows:

 AND

 OR

¬ NOT

IMPLICATION

EQUIVALENCE (if and only if)



2. Quantifiers: Each quantifier defines a variable for the

duration of the following expression, and indicates the

truth of the expression…

The two quantifier symbol are-

• Existential quantifier “there exists” ()
The expression is true for at least one value of the
variable

• Universal quantifier “for all” 

The expression is true for every possible value of the
variable

3. Constants: Constants are fixed-value terms that belong

to a given domain of discourse . Ex- Anil, 2, a,b,c…



4. Predicates: predicates symbols represent relation or

properties of an object that is true and false. Capital letter

and proper parenthesis such as P(x), BROTHER-

OF(x,y), FATHER-OF (x,y) , >, …

5. Function: Function symbols represent relations defined

on domain D. They Map n element (n>=0) to a single

element of the domain. Ex. Sqrt, LeftArmOf, …

6. Variables: variables are term that are assume different

values over a given domain. Ex.-x, y, z,a, b, …



Example:

1.Caesar was a ruler

Ruler(Caesar)

2. Every one is loyal to someone.

x: x : loyal(x, y)
3. All men are mortal

x: men(x)-> mortal(x)



Everyone likes Ice-cream
x,  likes(x, Ice-cream)

Someone likes Ice-cream
x,  likes(x, Ice-cream)

All children like Ice-cream
x,  child(x)  likes(x, Ice-cream)

Everyone likes Ice-cream unless they are 
allergic to it
x, likes(x, Ice-cream)  allergic(x, Ice-cream)
x, allergic (x, Ice-cream)  likes(x, Ice-cream)



Properties of statement:
1. Satisfiable: A statement is satisfiable if there is some

interpretation for which it is true.
2. Valid or tautology: A statement is valid if it true for

every interpretation.
3. Contradiction: A statement is contradictory

(unsatisfiable ) if there is no interpretation for which it
is true.

4. Equivalence: Two statement are equivalent if they
have the same truth value under every interpretation .

5. Logical consequences: The sentence S is logical
consequence of S1,S2….Sn if and only if (S1 S2
………..Sn)-> S is valid.

6. Inference Rules: Inference means derived new fact
from existing one.



Some Example of inference rule are follow……………….

1. MODUS PONENS: From P and P Q, we can conclude Q . This is written as 

P

PQ

C:Q Where C for conclude

Ex.

All men are mortal : P

Socrates is  a man:  PQ

Conclude:   Q:  Socrates is mortal

Notes: if premises are true, then the conclusion is necessarily  true too.

2. Chain rule : From PQ and QP  we can conclude PR

PQ

QP

C: PR



Properties of Quantifiers:

x y is the same as y x

x y is the same as y x

x y is not the same as y x

x y Loves(x, y)

“There is a person who loves

everyone in the world”

y x Loves(x, y)

“Everyone in the world is loved

by at least one person”



Nesting Quantifiers:

Everyone likes some kind of food

y x,  food(x)  likes(y, x)

There is a kind of food that everyone likes

x y,  food(x)  likes(y, x)

Someone likes all kinds of food

y x,  food(x)  likes(y, x)

Every food has someone who likes it

x y,  food(x)  likes(y, x)



Example:

Quantifier Duality

Not everyone like McDonalds

(x,  likes(x, McDonalds))

x, likes(x, McDonalds)

No one likes McDonalds

(x,  likes(x, McDonalds))

x, likes(x, McDonalds)



1. Marcus was a man.

Man(marcus)

2. Marcus was a Pompeian

pompeian(marcus)    

3. All pompeians were Romans

x :pompeians(x)romans(x)

4. Caesar was a ruler  

caesar(ruler)

5. All Romans were either loyal to Caesar or hated him.  -

x :roman(x)loyalto ( x, caesar) v hate(x,caesar)

6. Everyone is loyal to someone. 

x : y : loyalto(x,y)

7. People only try to assassinate rulers they are not loyal to. .---

x : y person(x) ruler(y) tryassassinate(x,y) loyalto(x,y)

8. Marcus tried to assassinate Caesar. ---- tryassassinate(marcus,caesar)



Conjunctive normal form(CNF): A sentence is written in

conjunctive normal form look likes:………….

(AvB C) (BvD) (A) (B vC)

(AvB C) is a clause

Its outermost structure is conjunction. It’s a conjunction of

multiple units.these unit called “clauses”

A clause is the disjunction of many things. The unit that make

up a clause are called literals. A literal is either a variable or

negation of variable .

Ex. A,B , C are literal

You can take any sentence in propositional logic write it in

conjunctive normal form(CNF).



Convert to CNF:

1. Eliminate arrows using definitions..

AB = A v B

1. Drive negation using de Morgan's Law

(A v B)= A  B

(A  B)= A v  B

3. Distribute OR over AND

A v(B C)=> (A v B) ( A v C)

Every sentence can be converted to CNF, but it may grow exponentially in size.

Ex.

(A v B) ( C D)

(A v B) v (C v D)

(A  B) v (C v D)

(A v C v D)  (B v  C v D) ……………..CNF



Clausal form (which is also sometimes called "prenex normal form") is like CNF in its outer

structure (a conjunction of disjunctions, or an "and" of "ors"). But it has no quantifiers.

FOPL Convert to clause form:

Rules:

1. Eliminate implication (arrow) using the fact..

(X <=> Y) by expression ((X => Y) ^ (X => Y))

that  x  y  is equivalent to x   y

2. Move the negation symbol to individual term using deMorgan’s

law
(p)  p
(a  b)  (a  b)
(a  b)  (a  b)
x, p(x)    x, p(x)
x, p(x)    x, p(x)



3. Standardize variable : rename all variables so that each quantifier has its own

unique variable name. since variables are just dummy name, this process can not

effect the truth value of w.ff.

x: P(x) v x: Q(x) would be written as

x: P(x) v y: Q(y)

4.Move all the quantifier to the left of the formula without changing their relative

order. At this stage the formula is known as prenex normal form. E x.

x: P(x) v y: Q(y)

x: y: P(x) v Q(y)

5. Eliminate existential quantification by introducing Skolem functions( the function

that is eliminate the existential quantifier).

i- If the leftmost quantifier in an expression is an existential quantifier the replace

all occurrences of the variable with a arbitrary constant not appearing else where in

expression and delete the quantifier.

x, y (P(x ,y ) is written as y (P(a ,y ) where ‘a’ is constant not appearing in

formula



ii- For each existential quantifier preceded by one or more

universal quantifier , replace all occurrence of the existential

quantifier variable by a function symbol not appearing else

where in expression., And delete the existential quantifier.

x ,y, z, (P(x ,y) v Q(z) is written as x ,y P(x ,y) v

Q(f(x , y) ) ..

This function called Skolem functions, And argument of the

function should math all variable in universal quantifier

6. Drop all universal quantifier put the remaining expression

in CNF.



7. Distribute "and" over "or" to get a conjunction of

disjunctions called conjunctive normal form.

convert (P ^ Q) v R to (P v R) ^ (Q v R)

convert (P v Q) v R to (P v Q v R)

8. Split each conjunct into a separate clause, which

is just a disjunction ("or") of negated and non-

negated predicates, called literals. This expression

is said is to be clausal form.

9. Standardize variables in the set of clauses its means

rename the variable so that no two clause make reference

to the same variable



Example: All Romans who know Marcus either hate 

Caesar or think that anyone who hates anyone is crazy

x, [ Roman(x)  know(x, Marcus) ] 

[ hate(x, Caesar)  (y, z, hate(y, z)  thinkCrazy(x, y))]

1. x, [ Roman(x)  know(x, Marcus) ] 

[hate(x, Caesar)  

(y, (z, hate(y, z)) thinkCrazy(x, y))]

2. x, [ Roman(x)  know(x, Marcus) ] 

[hate(x, Caesar)  

(y, z, hate(y, z)  thinkCrazy(x, y))]
3. Not necessary in our running example



4. x, y, z,[ Roman(x)  know(x, Marcus) ] 

[hate(x, Caesar)   (hate(y, z)  thinkCrazy(x, y))]

5. Not necessary in our running example

6. [ Roman(x)  know(x, Marcus) ] 

[hate(x, Caesar)   (hate(y, z)  thinkCrazy(x, y))]

7. Roman(x)  know(x, Marcus) 

hate(x, Caesar)   hate(y, z)  thinkCrazy(x, y) 
8. Not necessary in our running example

9. Not necessary in our running example

Final result:

Roman(x)  know(x, Marcus) 

hate(x, Caesar)   hate(y, z)  thinkCrazy(x, y)



Forward  chaining and Backward chaining:

You have a collection of logical expressions (premises), and you are trying to prove some
additional logical expression (the conclusion). There is two way in which rules can be
used in rule based system to draw a inference one is called forward chaining or forward
deduction and other is called backward chaining or backward deduction.

1. Forward chaining : It is start with the available data and use inference rules to
extract more data and stop if one of your results is the conclusion you want.
So forward chaining is a data driven method of deriving a particular goal
from given a knowledge and set of inference rules.
A search control method is needed to select which element(s) of the
knowledge base to apply the inference rule to at any point in deduction.

Example: suppose that the goal is to conclude the color of a pet named Fritz, given
that he croaks and eats flies, and that the rule base contains the following four
rules:

-if [X croaks and X eats flies] then [X is a frog]
-if [X chirps and sings] then [X is a canary]
-if [X is a frog] then [X is colored green]
-if [X is canary] then [X is color yellow]
-if [X croaks and eats flies] then [X is a frog]
-[ Fritz croaks and eats flies]
Goal:
[Fritz is colored y] ?



If [X Croaks and eats flies]

Then [X is frog]

Fritz  Croaks and eats flies

If [X  is frog]

Then [X is  colored green][Fritz is  a frog]

Fritz  is colored green 
[Fritz is color y] ?

Y= green

[Fritz is  a frog]

[Fritz is  colored  green]



2. Backward Chaining: In this, We Start from the
conclusion (Goal), and try to choose inference rules
that will get you back to the logical expressions you
have. Goal is broken into many sub goal which can
be solved easily.

Example.
KB:-
-if [X croaks and X eats flies] then [X is a frog]
-if [X chirps and sings] then [X is a canary]
-if [X is a frog] then [X is colored green]
-if [X is canary] then [X is color yellow]
-if [X croaks and eats flies] then [X is a frog]
-[ Fritz croaks and eats flies]
Goal:
[Fritz is colored y] ?



If [X  is canary ]

Then [X is  colored yellow]

X is Frog 

If [X  is frog]

Then [X is  colored green]

X croaks and eat flies

If[ X croaks and eats flies

Then [X is  a Frog]

X = fritz    ,Y= green

[ X is  a Canary]

[X croaks and  eat flies]  

prove

[Fritz is  colored  Y]

X is  Canary 

[ X is  a Frog]



Note : Forward chaining use Deductive Inference rule(
Modus Ponen and backward chaining use Abductive
Inference rule( Modus Ponen)

FC: Conclude “A” and “A” implies “B” to “B”
BC: Conclude from “B” and A->B to “A”

A B
AB AB

B A

Example: It is raining---A
If it is raining ,the road is wet ---A->B
The Road is wet.--B



Resolution

• Resolution technique uses proof by contradiction and is

based on the fact that any sentence in propositional logic can

be transformed into an equivalent sentence in conjunctive

normal form .The resolution rule yields a sound and

complete algorithm for deciding the satisfiability of a

propositional formula

• The resolution procedure is a simple iterative procedure: at

each step , two clauses, called the parent clauses, are

compared(resolved), yielding a new clause that has been

inferred from them The new clause represent that two parent

clauses interact with each other.



Resolution: Propositional Form

Once sentences are in clausal form, we can apply the resolution

inference process.

One rule is enough.

Given two clauses, this process is:

1.Find two complementary terms (e.g., A and  A) in the two

clauses.

2. cancel them

3. form a new clause containing all the remaining terms.

e.g. resolving

X v Y v Z

 X v A

Y v Z v A

which is a valid deduction.



Resolution in Predicate Logic Algorithm

1. Convert all the statements of F to clause form

2. Negate P and convert the result to clause form. Add it to the set of clauses

obtained in step 1.

3. Repeat until either a contradiction is found or no progress can be made or a

predetermined amount of effort has been expended:

a) Select two clauses. Call these the parent clauses.

b) Resolve them together. The resulting clause, called the re-solvent, will be the

disjunction of all of the literals of both of the parent clauses with the following

exception: If there are any pairs of literals L and ¬L such that one of the parent clauses

contains L and the other contains ¬L, then select one such pair and eliminate both L

and ¬L from the re-solvent.

c) If the resolvent is the empty clause, then a contradiction has been found. If

it is not then add it to the set of clauses available to the procedure.



Sl. No Given Axioms
Converted to Clause 

Form

1 P P

2 (P˄Q) → R ¬P˅Q˅R

3 (S˅T) → Q ¬S˅Q

4 ¬T˅Q

5 T T





Example………..
The Road is Wet
If It is raining , the road is wet
It is raining.



Resolution in Predicate Logic:
Let F be a set of given statements and S is a statement to be proved.

1. Covert all the statements of F to clause form.

2. Negate S and convert the result to clause form. Add it to the set of

clauses obtained in 1.

3. Repeat until either a contradiction is found or no progress can be

made.

a) Select two clauses. Call these parent clauses.

b) Resolve them together. The resolvent will be the disjunction

of all of these literals of both clauses with appropriate substitutions

performed and with the following exception: If there is a pair of

literals T1 and T2 such that one parent clause contains T1 and the

other contains T2 and if T1 and T2 are unifiable, then neither T1 nor

T2 should appear in the resolvent. Here T1 and T2 are called

complimentary literals.

C) If the resolvent is the empty clause , then a contradiction

has been found. If it is not, then add it to the set of clauses available to

the procedure





Example :

(a)

1. Marcus was a man

2. Marcus  was a Pompeian.

3. Marcus was born in 40 AD.

4. All Pompeian’s died when the Volcano erupted  in 1979

5. No mortal lives longer than 150 years.

6. It is now 1991

7. Alive Man not dead

Goal: Prove- “Marcus is dead” using resolution

(b)

1. John likes all kinds of food.

2. Apples are food.

3. Chicken is food

4. Anything anyone eat   and is not killed alive.

5. Sue eats everything bill  eats.

(i)Translate these sentence into formulas in predicate logic.

(ii) Prove that John likes peanut using backward chaining.



Bayesian Network: Representation and Syntax Bayes nets (BN)
(also referred to as Probabilistic Graphical Models and Bayesian
Belief Networks) are directed acyclic graphs (DAGs) where each
node represents a random variable. The intuitive meaning of an arrow
from a parent to a child is that the parent directly influences the child.
These influences are quantified by conditional probabilities.

Syntax:
1. a set of nodes, one per variable
2. a directed, acyclic graph (link ≈ "directly influences")
3. a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution
represented as a conditional probability table
(CPT) giving the distribution over Xi for each
combination of parent values



Wet grass

Rainy
Sprinkler

Cloudy



C P(S=F) P(S=T)

F 0.5 0.5

T 0.9 0.1

C P(R=F) P(R=T)

F 0.8 0.2

T 0.2 0.8

S R P(W=F) P(W=T)

F     F 1.0 0.0

T     F 0.1 0.9

F     T 0.1 0.9

T      T 0.01 0.99

P(C=F) P(C=T)

0.5 0.5



Consider another example, in which all nodes are binary, i.e., have

two possible values, which we will denote by T (true) and F (false).

We see that the event "grass is wet" (W=true) has two possible

causes: either the water sprinker is on (S=true) or it is raining

(R=true). The strength of this relationship is shown in the table. For

example, we see that Pr(W=true | S=true, R=false) = 0.9 (second

row), and hence, Pr(W=false | S=true, R=false) = 1 - 0.9 = 0.1, since

each row must sum to one. Since the C node has no parents, its

CPT specifies the prior probability that it is cloudy (in this case, 0.5).

(Think of C as representing the season: if it is a cloudy season, it is

less likely that the sprinkler is on and more likely that the rain is

on.)



Exmple2:

• Topology of network encodes conditional independence assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent given 
Cavity



Example:-

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
-A burglar can set the alarm off
-An earthquake can set the alarm off
-The alarm can cause Mary to call
-The alarm can cause John to call




